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Abstract

Short-time dynamic scaling analysis method is applied to investigate the phase transition of a ferromagnetic Ising chain model on the simple

cubic lattice. The phase transition temperature Tc is determined from the time evolutions of magnetization M(t) and square magnetization M2(t) at

temperatures near Tc. The resulted Tc is consistent with that obtained from the annealing Monte Carlo method. The short-time dynamic behaviors

of magnetizations near the transition temperature are also studied. We find both M(t) and M2(t) show power law decay near Tc after a very short

time period tmicz100 Monte Carlo steps.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Short-time Monte Carlo (MC) method has witnessed great

success since Janssen et al. discovered that a universal dynamic

scaling form exists in the macroscopic short-time regime [1]. A

number of MC simulations confirmed the existence of such a

short-time dynamic behavior [2–8]. When a system initially at

high temperature disordered state or at zero temperature

ground state (GS) is quenched to the critical temperature, a

universal short-time behavior emerges after a microscopic time

scale tmic [3,8]. The short-time dynamic scaling form provides

a new technique for measuring the critical temperature as well

as both dynamic and static critical exponents [3,5,8]. It had

been used to determine the second-order phase transition

temperature of many magnetic systems, such as two-

dimensional (2D) and three-dimensional (3D) Ising models,

XY model, etc. [3,8–11].

In this work, we apply the short-time dynamic scaling to

determine the phase transition of a ferromagnetic Ising

polymer chain model. The Ising polymer chain model is a

reasonable model that can describe some physical aspects of

magnetic polymers in dilute solutions. Theoretical design of
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magnetic polymer is based on the magnetic interactions among

spins and a lot of experimental results can be well explained by

Ising or Heisenberg interactions among spins [12–16]. It was

expected that the flexibility, low loss, thin-film-forming ability,

and low density will ensure the ferromagnetic polymers play

important roles in technology [17], such as in fields of

communication, energy and information. The Ising polymer

chain model adopted in this paper is a coarse-grained bond

fluctuation model [18] on the simple cubic (SC) lattice with

spatial nearest neighbor (NN) ferromagnetic Ising interaction

[19]. The model chain undergoes a magnetic phase transition as

well as a spatial configurational collapse transition at the

critical temperature Tc at zero field [20]. It was also found that

both magnetic and spatial configurational properties are

dependent on external fields: different field dependent

behaviors are observed at temperatures below and above the

critical temperature Tc [21].

2. Model and simulation method

The 3D Ising chain model on the SC lattice is described by

the following Hamiltonian:

H ZK
X
½ij�

Jijsisj (1)

where siZG1 are the spin variables at monomers of the chain.

The features of the model are reflected in the spin–spin

couplings Jij. In this work, we consider spatial NN interactions
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Sketch 1. One configuration of an Ising chain on the square lattice. Circles

represent monomers of the chain. Grey circle and empty circle represent spin up

(sZ1) and spin down (sZK1), respectively. Nearest neighbor number

depends on spatial configuration. For example, monomer 4 has two nearest

neighbors 3 and 11, while monomer 8 has three nearest neighbors 5, 7 and 9.
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with JijZJ for [ij] nearest neighbor on the lattice and zero

otherwise, i.e. the spin–spin interactions exist only between a

pair of spins with spatial distance rij Z jðriKðrjj one lattice

apart, see Sketch 1. Here we consider the ferromagnetic case

and set the coupling constant JZ1 for simplification. The

excluded volume of the monomer is also taken into account by

the self-avoiding requirement that no lattice site can be

occupied simultaneously by two or more monomers. The

spin variable in this model has two values siZG1,

corresponding to the spin quantum number SZ1/2.

The polymer chain of chain length n is comprised of n

identical monomers (monomer numbered from 1 to n)

consecutively linked with a variable bond length on the SC

lattice. Each monomer occupies one site of the lattice. The

chain’s bond length can fluctuate among values 1,
ffiffiffi
2

p
and

ffiffiffi
3

p
in

the unit of the lattice constant which is set as unit of length [22].

The bond between successive monomers can be taken from a

set of 26 allowed bond vectors obtained from the set {(1,0,0),

(1,1,0), (1,1,1)} by symmetry operations of the cubic lattice.

A chain configuration comprises spatial and spin configur-

ations. The former describes the spatial arrangement of

monomers and the latter describes the arrangement of spins.

Therefore, the dynamics of the chain’s configuration contains

two aspects: updating spatial configuration and updating spin

configuration. The evolution of the spatial configuration starts

by randomly choosing a monomer and then attempts to move it

one lattice spacing in a direction randomly selected from six

possibilities: Gx, Gy, Gz. This trial move will be accepted if

all the following four conditions are satisfied: (1) self-

avoidance is obeyed, (2) the new bond vector still belongs to

the allowed bond set, (3) two bonds do not intersect, and (4) the

Boltzmann factor exp(KDE/kBT) is greater than a random

number uniformly distributed in the interval (0, 1), where DE is

the change in energy due to the trial move. The fourth criterion,

i.e. the Metropolis criterion, ensures that the system obeys

Boltzmann statistics at a specific temperature [23,24]. To

update the spin configuration, we randomly choose a monomer

and flip the spin on it according to the Metropolis criterion.
The time unit used in the work is MC step (MCS). One MCS

includes n monomer trial movements and n trial spin flips.

Our dynamic MC simulation is consisted of two main steps.

First, we anneal the system to obtain a GS at approximate zero

temperature, then we perform short time dynamics near Tc after

quenching the annealed GS to a temperature near Tc. The

details of our simulation are described below.

Simulation starts from an initial random configuration at

temperature much higher than the phase transition temperature.

Then we slowly decrease the temperature with a variable

temperature step DT. A small DT is used near Tc since physical

properties vary faster near Tc while a large DT is used at

temperatures far away from Tc since physical properties change

little at high or low temperatures. At each temperature, system

is updated for total 500n2 MCS and thus 500 samples are

recorded with a time interval DtZn2 MCS. The final

configuration at the previous temperature is used as the

initial configuration for the subsequent temperature. The final

configuration at TZ0.1 is considered as the annealed GS since

the configuration roughly does not change after T is less than

0.5. We totally generated 25 GSs, therefore we have 12,500

samples in the calculation of configurational properties. The

short-time dynamics of the Ising chain is studied by quenching

the GS to a temperature near Tc. We have simulated 500

different evolutions by using different random seeds for each

GS thus we have also 12,500 samples for average. The reason

we use different random seeds instead of generating a large

number of GSs is that we find all annealed ground states are

similar: a roughly compacted sphere with all spins align in the

same direction. In the work, the temperature T is in the unit

J/kB, the energy is in unit of J. The chain length we used is

nZ300. Though the phase transition temperature depends on

the chain length n, we find that chain length nZ300 is

long enough for studying magnetic and configurational

properties [20].
3. Results and discussions

The spatial autocorrelation function (ACF) [25]

CRGðtÞ Z
hðRgðtÞKhRgiÞðRgð0ÞKhRgiÞi

hR2
giKhRgi

2
(2)

and the magnetic ACF

CMðtÞ Z
1

n

Xn

iZ1

hsið0ÞsiðtÞi (3)

are measured for the Ising chain model. Here the brackets h i

denote ensemble average approximated over time and samples.

Rg is the radius of gyration. The results of both ACFs are

presented in Fig. 1. We find the drop of CRG is very slow

comparing with that of CM, i.e. the relaxation of spatial

configuration is much longer than the relaxation of spin



Fig. 1. Plots of (a) the spatial autocorrelation function CRG and (b) magnetic

autocorrelation function CM as a function of time t for chain of length nZ300 at

several temperatures.

Fig. 2. Dependence of absolute and square magnetizations hjMji and hM2i on the

temperature T for chain of length nZ300. Vertical straight dash line at TZ1.31

indicates the temperature at which both hjMji and hM2i vary fastest.

Fig. 3. Typical chain configurations at different temperatures T: (a) TZ1.6 (O
Tc); (b) TZ1.0 (!Tc); (c) TZ0.01. Chain length is nZ300, and the phase

transition temperature Tc is about 1.31. Grey and white circles are spins with

sZ1 and sZK1, respectively.
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configuration. The relaxation time can be calculated as [25]

tr Z

ðN

0

CðtÞdt (4)

We find the relaxation time of spatial configuration tr is about

50,000 MCS at TZ1.4, which is smaller than the sampling time

interval DtZn2Z90,000 MCS for nZ300. That ensures us to

obtain independent samples at high temperatures. However, the

relaxation time tr increases with the drop of temperature when

T!Tc. And at temperatures far below Tc, the configuration

almost does not change and tr approach infinite. Therefore, we

use conventional annealing method with fixed time interval in

sampling below Tc [20,26,27].

It is well known that cluster algorithms, such as the

Swendsen-Wang and the Wolff algorithms [28,29], can

decrease relaxation time of spin system by introducing global

updating of spin clusters. However, Fig. 1 shows that the

relaxation of spatial configuration is several orders slower than

that of spin configuration. That is, updating spatial configur-

ation is a more time-consuming process. Therefore, we did not

use cluster algorithms to update spins.

The order parameter for studying the phase transition is the

magnetization which is defined as the average spin moment per

monomer,

M Z
1

n

Xn

iZ1

si (5)
The magnetization M varies from 0 for a disordered state to 1

for an ordered state. At first we present the results obtained

from the annealing MC simulations where the system is cooled

from TZ4.0 to 0.1. Since the statistical averaged magnetiza-

tion hMi equals zero at zero field, we therefore, use mean

absolute magnetization hjMji and mean square magnetization

hM2i instead. Fig. 2 shows the dependence of hjMji and hM2i on

the temperature T for the chain of length nZ300. Both hjMji

and hM2i varies from nearly zero at high temperatures to

roughly 1 at low temperatures, indicating that the model has

spontaneous magnetization at low temperatures. This reveals

that the 3D Ising chain model differs from 1D Ising chain

model; the latter has no spontaneous magnetization at all. We

find the critical temperature Tcz1.31 at which both hjMji and

hM2i change fastest, or the absolute values of the differen-

tiations dhjMji/dT and dhM2i/dT reach maximum.

Fig. 3 gives some typical configurations at different

temperatures. At temperatures higher than Tc, the chain is in

an extended coil state as shown in Fig. 3(a). And the

summation of spins
Pn

iZ1 si roughly equals zero. It is clear to

observe many small spin clusters at temperatures above Tc.



Fig. 4. Log–log plot of the evolution of mean magnetization hMi and mean

square magnetization hM2i with time t at temperatures TZ1.28, 1.32, and 1.36,

respectively.

Fig. 5. Log–log plot of the evolution of mean square magnetization hM2i with

time t after a microscopic time scale tmicZ100. Solid curves are Monte Carlo

results at temperatures TZ1.28, 1.30, 1.32, 1.34 and 1.36 (from the top to

bottom), respectively. Dash line is the best linear fitting with the critical

temperature TcZ1.324.
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This observation confirms our previous analysis on the

dependence of configurational energy of Ising chain on the

temperature [20], where we found that the chain energy

steadily decreases while the magnetization maintains roughly

zero at TOTc. At low temperatures T!Tc, a sphere like chain

configuration forms and almost all spins align in the same

direction, as shown in Fig. 3(b) and (c). Below Tc,

configuration changes little with the decrease of temperature.

An ordered configuration forms at very low temperature as

shown in Fig. 3(c). For the current chain model, it is clear to

observe the cooperation of spin and spatial configurations that

was proved very important in the phase transition of the Ising

chain model [20].

Starting from the annealed GS, we quench the system to a

temperature near Tc. As we know, configuration changes a little

in the short-time region so we set MZ1 for all the GSs by

flipping all spins of those states with MZK1. Thus the mean

magnetization M will always be positive in the short-time

region. Based on the short-time dynamic scaling theory, the

scaling form of kth order moment of the magnetization for the

dynamic relaxation of a magnetic system, quenched from an

initial ordered state, is given by [8]

Mkðt; t;LÞ Z bKkb=nMkðbKzt; b1=nt; bK1LÞ (6)

where tZ(TKTc)/Tc is the reduced temperature, t is the time, b

is a scaling factor. And L is the size of simulated system. This

scaling form is assumed to hold in the macroscopic short-time

regime after a microscopic time scale tmic [8]. Usually, short-

time simulations are carried out for a square or cubic system

with system size L in all dimensions, e.g. 2D or 3D Ising

systems. In these systems, order parameter is dependent on the

system size L. However, the natural size of chain system in

dilute solution will be the chain length n. To simulate polymer

in dilute solution, we use a large cubic box to ensure box size

L[
ffiffiffiffiffiffiffiffi
hR2

gi
q

or L[n0:6 for a SAW chain, thus the effect of the

box on the chain can be ignored. Here, hR2
gi is the mean square

radius of gyration. In this work, a box of size LZ120 is used.

For this case, the properties of chain model do not depend on

the size of simulation box but only depend on the chain length.

Therefore, we expand the short-time scaling form (6) by

replacing the system size L by the chain length n and get

Mkðt; t; nÞ Z bKkb=nMkðbKzt; b1=nt; bK1nÞ (7)

for chain models.

For a sufficiently long chain, we can deduce the scaling

behavior for the magnetizations M and M2 (kZ1 and kZ2 in

Eq. (7)), respectively. By setting the scaling factor b in the

scaling form (7) as bZt1/z, we get

Mðt; tÞ Z tKb=nzG1ðt
1=nz

tÞ (8)

for kZ1 and

M2ðt; tÞ Z tK2b=nzG2ðt
1=nztÞ (9)

for kZ2. At the critical temperature Tc, tZ0, the magnetiza-

tions are expected to have the best power law behaviors since

now G1(0) and G2(0) are independent of time t. Therefore, we
can deduce the critical temperature Tc from the time evolution

of magnetization M and square magnetization M2. In this work,

we have calculated the mean values hMi and hM2i from 12,500

samples.

Fig. 4 gives the log–log evolution of the mean magnetiza-

tion hMi and mean square magnetization hM2i at temperatures

TZ1.28, 1.32 and 1.36. At the very beginning, all curves have

the same behavior: they decrease with time. Different behavior

emerges after a microscopic time scale tmicZ100: log–log

hMiKt (or hM2iKt) curves are concave at low temperatures

while they are convex at high temperatures. Therefore, a

straight line with power law decay at Tc is expected as Eqs. (8)

and (9). It is clear that the transition temperature is between

1.28 and 1.36.

In order to precisely locate the critical temperature Tc, we

have also calculated the mean magnetization hMi and square

magnetization hM2i at temperatures TZ1.30 and 1.34. For

instance, Fig. 5 presents the evolution of mean square

magnetization hM2i with time t after a microscopic time scale

tmicZ100. With the magnetizations obtained at these five

temperatures, we calculate the values of magnetization at other
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temperatures within (1.30, 1.34) with a temperature step 0.001

by using quadratic interpolation method. At every temperature,

the deviation of the magnetization from the power law is

calculated as the square deviations: SDZ
P

t ½hM
2iðtÞKyðtÞ�2

in the time interval (100, 4000), here the power function yðtÞZ
C1tKC2 is obtained by linear fitting of log–log hM2iKt curve in

Fig. 5. The temperature at which the square deviation is

minimum is defined as the critical temperature Tc. With this

method, we have determined the transition temperature Tc and

the decay rate of the magnetizations at Tc. We find the

magnetization hMi and the square magnetization hM2i give

roughly the same results: TcZ1.318 and b/nzZ0.044 from hMi

and TcZ1.324 and b/nzZ0.043 from hM2i. The phase transition

temperature obtained from the short-time scaling analysis is

very close to that determined from the annealing method where

TcZ1.31 is found. We, therefore, conclude that the short-time

dynamic Monte Carlo method can be used to determine the

phase transition temperature of Ising polymer chain model.

From Figs. 4 and 5, one can see that both hMi and hM2i do not

reach their equilibrium values: finite values below Tc and

roughly 0 above Tc. That means in the short-time regime the

system is not in the equilibrium state. In other words, our short-

time dynamic simulations are performed in states far away

from the equilibrium states at or near Tc. Therefore, the short-

time MC simulations do not suffer from the critical slowing

down which makes the MC sampling very inefficient near Tc.

The short-time dynamic scaling method provides a new

method to locate the phase transition temperature of magnetic

chain models.

4. Conclusion

We applied short-time dynamic scaling analysis method to

determine the phase transition temperature Tc of a ferromag-

netic Ising chain model on the simple cubic lattice. The initial

ground states with magnetizations MZM2Z1 are firstly

generated by annealing the system from high temperature to

low temperature. We then quench the system to temperatures

near the phase transition temperature Tc and simulate the

evolution of magnetization hMi and square magnetization hM2i

at these temperatures. We determine TcZ1.318 from hMi and

TcZ1.324 from hM2i using short-time scaling analysis method.

The resulted Tcs are in agreement with that obtained from the

annealing Monte Carlo method. After a very short-time period
tmicz100 Monte Carlo step, both hMi and hM2i show power

law decay near Tc with critical exponent b/nzz0.044.
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